ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Brookhaven experiment offers new way to study nucleus structure
Recently published research done at Brookhaven National Laboratory is offering a new, high-energy method for studying the structure of atomic nuclei. Scientists have been using the Solenoidal Tracker at the Relativistic Heavy Ion Collider (RHIC), known as STAR, to track the particles produced by ion collisions in the particle accelerator. Their research was published earlier this month in Nature.
F. F. Fondeur, W. R. Wilmarth, T. B. Peters, S. D. Fink
Nuclear Technology | Volume 151 | Number 3 | September 2005 | Pages 297-302
Technical Paper | Radioisotopes | doi.org/10.13182/NT05-A3652
Articles are hosted by Taylor and Francis Online.
The stability of mercury fulminate under gamma-ray irradiation and in a high-alkalinity sludge environment was determined. Both differential scanning calorimetry and Fourier transform infrared spectroscopy were used to characterize mercury fulminate. Mercury fulminate completely decomposed in a gamma-ray source (0.86 Mrad/h) after a dose of 208 Mrad. This exposure equates to ~2.4 to 4 yr in Savannah River Site tanks. Mercury fulminate decomposed in contact with high-alkalinity wet sludge. This study suggests that any mercury fulminate or closely related energetic species decomposed long ago if it ever formed in the tank farm.