ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Youssef A. Shatilla, Eric P. Loewen
Nuclear Technology | Volume 151 | Number 3 | September 2005 | Pages 239-249
Technical Paper | Fission Reactors | doi.org/10.13182/NT05-A3646
Articles are hosted by Taylor and Francis Online.
The need for a new steady-state fast-neutron reactor has been the subject of numerous national meetings and discussions. This type of reactor will be able to open new frontiers of research for Generation IV reactors, the Space Propulsion Program, and the Advanced Fuel Cycle Initiative. With the confluence of these three programs' fast-spectrum testing needs, we set out to conceptualize a new system by looking at previous successful reactor concepts. This paper presents a new concept for a fast-spectrum test reactor that is horizontal in orientation, with individual pressure tubes running the entire length of the scattering-medium tank filled with a liquid heavy metal. This approach for a test reactor will provide more flexibility in refueling, sample removal, and ability to completely reconfigure the core to meet different users' requirements. Full core neutronic analysis of more than 14 combinations showed that a large hexagonal steam-cooled U-10Zr fuel, with a core power of 267 MW(thermal), produced a fast flux (>0.1 MeV) of 1.3 × 1015 n/cm2s averaged over the whole length of the irradiation channel. A depletion run with an initial enrichment of 20 wt% 235U had a flat reactivity curve for the first 180 days of cycle due to in-core breeding. Although considerable neutronic optimization and a thermal-hydraulic analysis remain to be performed, it appears that a reactor core with this innovative geometry could meet future fast flux testing needs.