ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reviewers needed for NRC research proposals
The deadline is fast approaching for submitting an application to become a technical reviewer for the Nuclear Regulatory Commission’s fiscal year 2025 research grant proposals.
Ehud Greenspan, Pavel Hejzlar, Hiroshi Sekimoto, Georgy Toshinsky, David Wade
Nuclear Technology | Volume 151 | Number 2 | August 2005 | Pages 177-191
Technical Paper | Advances in Nuclear Fuel Management - Fuel Management of Reactors Other Than Light Water Reactors | doi.org/10.13182/NT05-A3642
Articles are hosted by Taylor and Francis Online.
Fast reactors cooled by lead or lead-bismuth alloy offer new interesting fuel cycle and fuel management options by virtue of the superb neutronics and safety features of these heavy liquid metal (HLM) coolants. One option is once-for-life cores having relatively low power density. These cores are fueled in the factory; there is no refueling or fuel shuffling on site. A second option is very long-life cores being made of a fissioning zone and a natural uranium blanket zone. The fissioning zone very slowly drifts toward the blanket. A third option is multirecycling of light water reactor (LWR) discharged fuel without partitioning of transuranics (TRUs) in fuel-self-sustaining reactors. LWR spent fuel could provide the initial fuel loading after extracting fission products and ~90% of its uranium. The makeup fuel is natural or depleted uranium. A fourth option is the high-burnup once-through fuel cycle using natural or depleted uranium feed. The initial fuel loading of this reactor is a mixture of enriched and natural uranium. The natural uranium utilization is 10 to 20 times higher than that of a once-through LWR. A fifth option is transmutation of TRUs from LWRs using critical HLM-cooled reactors; such reactors could be designed to have the same high actinide burning capability of accelerator-driven systems and have comparable safety, but at a substantially lower cost. These novel reactor designs and fuel management options are hereby reviewed.