ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Michael Todosow, A. Galperin, S. Herring, M. Kazimi, T. Downar, A. Morozov
Nuclear Technology | Volume 151 | Number 2 | August 2005 | Pages 168-176
Technical Paper | Advances in Nuclear Fuel Management - Use of Alternate Fuels in Light Water Reactors | doi.org/10.13182/NT151-168
Articles are hosted by Taylor and Francis Online.
Thorium-based fuels can be used to reduce concerns related to the proliferation potential and waste disposal of the conventional light water reactor (LWR) uranium fuel cycle. The main sources of proliferation potential and radiotoxicity are the plutonium and higher actinides generated during the burnup of standard LWR fuel. A significant reduction in the quantity and quality of the generated Pu can be achieved by replacing the 238U fertile component of conventional low-enriched uranium fuel by 232Th. Thorium can also be used as a way to manage the growth of plutonium stockpiles by burning plutonium, or achieving a net-zero transuranic production, sustainable recycle scenario. This paper summarizes some of the results of recent studies of the performance of thorium-based fuels.It is concluded that the use of heterogeneous U-Th fuel provides higher neutronic potential than a homogeneous fuel. However, in the former case, the uranium portion of the fuel operates at a higher power density, and care is needed to meet the thermal margins and address the higher-burnup implications. In macroheterogeneous designs, the U-Th fuel can yield reduced spent-fuel volume, toxicity, and decay heat. The main advantage of Pu-Th oxide over mixed oxide is better void reactivity behavior even for undermoderated designs, and increased burnup of Pu.