ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Jeffrey R. Secker, Baard J. Johansen, David L. Stucker, Odelli Ozer, Kostadin Ivanov, Serkan Yilmaz, E. H. Young
Nuclear Technology | Volume 151 | Number 2 | August 2005 | Pages 109-119
Technical Paper | Advances in Nuclear Fuel Management - Increased Enrichment/High Burnup and Light Water Reactor Fuel Cycle Optimization | doi.org/10.13182/NT05-A3636
Articles are hosted by Taylor and Francis Online.
This paper discusses the results of a pressurized water reactor fuel management study determining the optimum discharge burnup and cycle length. A comprehensive study was performed considering 12-, 18-, and 24-month fuel cycles over a wide range of discharge burnups. A neutronic study was performed followed by an economic evaluation. The first phase of the study limited the fuel enrichments used in the study to <5 wt% 235U consistent with constraints today. The second phase extended the range of discharge burnups for 18-month cycles by using fuel enriched in excess of 5 wt%. The neutronic study used state-of-the-art reactor physics methods to accurately determine enrichment requirements. Energy requirements were consistent with today's high capacity factors (>98%) and short (15-day) refueling outages. The economic evaluation method considers various component costs including uranium, conversion, enrichment, fabrication and spent-fuel storage costs as well as the effect of discounting of the revenue stream. The resulting fuel cycle costs as a function of cycle length and discharge burnup are presented and discussed. Fuel costs decline with increasing discharge burnup for all cycle lengths up to the maximum discharge burnup considered. The choice of optimum cycle length depends on assumptions for outage costs.