ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Staffan Jacobsson Svärd, Ane Håkansson, Anders Bäcklin, Otasowie Osifo, Christopher Willman, Peter Jansson
Nuclear Technology | Volume 151 | Number 1 | July 2005 | Pages 70-76
Technical Paper | Advances in Nuclear Fuel Management - Core Physics and Fuel Management Methods, Analytical Tools, and Benchmarks | doi.org/10.13182/NT05-A3632
Articles are hosted by Taylor and Francis Online.
A need for validation of modern production codes with respect to the calculated pin-power distribution has been recognized. A nondestructive experimental method for such validation has been developed based on a tomographic technique. The gamma-ray flux distribution is recorded in each axial node of the fuel assembly separately, whereby the relative rod-by-rod content of the fission product 140Ba is determined. Measurements indicate that 1 to 2% accuracy (1) is achievable.A device has been constructed for in-pool measurements at reactor sites. The applicability has been demonstrated in measurements at the Swedish boiling water reactor (BWR) Forsmark 2 on irradiated fuel with a cooling time of 4 to 5 weeks. Data from the production code POLCA-7 have been compared to measured rod-by-rod contents of 140Ba. An agreement of 3.1% (1) has been demonstrated.It is estimated that measurements can be performed on a complete BWR assembly in 25 axial nodes within an 8-h work shift. As compared to the conventional method, involving gamma scanning of individual fuel rods, this method does not require the fuel to be disassembled nor does the fuel channel have to be removed. The cost per measured fuel rod is estimated to be an order of magnitude lower than the conventional method.