ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Juan J. Casal, Jan Krouthén, Manuel Albendea
Nuclear Technology | Volume 151 | Number 1 | July 2005 | Pages 51-59
Technical Paper | Advances in Nuclear Fuel Management - Core Physics and Fuel Management Methods, Analytical Tools, and Benchmarks | doi.org/10.13182/NT05-A3630
Articles are hosted by Taylor and Francis Online.
The introduction of the SVEA-96 Optima generation of advanced boiling water reactor fuel designs implies a further increment in complexity and heterogeneity that needs to be supported by accurate calculation tools. In order to take advantage of the improved economics offered by these modern fuel designs while simultaneously assuring safe and reliable reactor operation, both the reload design process and the online core monitoring procedures must be based on appropriate calculation methods. The modeling of transition cores involving the gradual introduction of these new fuel designs poses a severe challenge for the current core physics methods. Recognizing this, Westinghouse has engaged in a continuing process of improving its core physics calculation packages. This development program is supported by a comprehensive validation effort to demonstrate the accuracy and reliability of the improved methods as well as to identify areas requiring further development. The purpose of this paper is to summarize some of the results of this program.