ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Paul J. Turinsky
Nuclear Technology | Volume 151 | Number 1 | July 2005 | Pages 3-8
Technical Paper | Advances in Nuclear Fuel Management - Overview | doi.org/10.13182/NT05-A3626
Articles are hosted by Taylor and Francis Online.
The focus of this overview for this issue of Nuclear Technology, which contains papers presented at the American Nuclear Society Advances in Nuclear Fuel Management III (ANFM-III) 2004 topical meeting, is to introduce the subject of nuclear fuel management for light water reactors. A total of 23 papers was presented on this topic at ANFM-III. Nuclear fuel management involves making the so-called out-of-core and in-core decisions. Simply put, the out-of-core decisions address the attributes of the new (fresh) fuel that will be fabricated and the partially burnt (shuffled) fuel to reinsert into the core for additional energy production. The in-core decisions address where the fresh and burnt fuel along with burnable poisons should be located in the core. The above applies to batch refueling strategies, e.g., pressurized water reactors and boiling water reactors (BWRs). For BWRs, additional in-core decisions enter to address control rod pattern paired with core flow rate as a function of burnup. It is obvious that the out-of-core and in-core decisions are coupled.The objective of nuclear fuel management is to minimize the cost of electrical energy generation subject to operational and safety constraints. Since fuel resides in the core for several cycles, a multicycle assessment is required to make nuclear fuel management decisions. For nearly four decades there has been an effort to develop automated computational capability to assist the reload core nuclear design engineer in making nuclear fuel management decisions. This development has ranged from employment of heuristic rules to utilization of mathematical optimization approaches. This overview reviews the development of nuclear fuel management optimization capabilities by first defining the problem, then describing current capabilities, and finally projecting where future capabilities need to be developed to support the needs of reload core nuclear design engineers.