ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J. M. Scaglione, D. E. Mueller, J. C. Wagner
Nuclear Technology | Volume 188 | Number 3 | December 2014 | Pages 266-279
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-151
Articles are hosted by Taylor and Francis Online.
One of the most significant remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation—in particular, the availability and use of applicable measured data to support validation, especially for fission products (FPs). Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. This paper describes a validation approach for commercial spent nuclear fuel (SNF) criticality safety (keff) evaluations based on best-available data and methods and applies the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The criticality validation approach utilizes not only available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion program to support validation of the principal actinides but also calculated sensitivities, nuclear data uncertainties, and limited available FP LCE data to predict and verify individual biases for relevant minor actinides and FPs. The results demonstrate that (a) sufficient critical experiment data exist to adequately validate keff calculations via conventional validation approaches for the primary actinides, (b) sensitivity-based critical experiment selection is more appropriate for generating accurate application model bias and uncertainty, and (c) calculated sensitivities and nuclear data uncertainties can be used for generating conservative estimates of bias for minor actinides and FPs. Results based on the SCALE 6.1 and the ENDF/B-VII.0 cross-section libraries indicate that a conservative estimate of the bias for the minor actinides and FPs is 1.5% of their worth within the application model. This paper provides a detailed description of the approach and its technical bases, describes the application of the approach for representative pressurized water reactor and boiling water reactor safety analysis models, and provides reference bias results based on the prerelease SCALE 6.1 code package and ENDF/B-VII nuclear cross-section data.