ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Salih Güntay, Robin C. Cripps, Bernd Jäckel, Horst Bruchertseifer
Nuclear Technology | Volume 150 | Number 3 | June 2005 | Pages 303-314
Technical Paper | Radioisotopes | doi.org/10.13182/NT05-A3624
Articles are hosted by Taylor and Francis Online.
The decomposition of aqueous colloidal suspensions of AgI induced by ionizing radiation was investigated under various conditions using 188Re as an in situ beta-radiation source. The suspensions were stabilized by an initial excess of either I- or Ag+ ions. Although the results were somewhat scattered, the following trends were observed. With an initial excess of I- and under strong oxidizing conditions (N2O sparging) at pH 2, ~65% AgI was decomposed into nonvolatile and volatile iodine (ratio 2:1) for doses of ~20 kGy, and up to ~80% was decomposed (mostly nonvolatile iodine) at pH 5. Chloride ions greatly enhanced the volatile and lowered the nonvolatile fractions. Little decomposition (<10%) was obtained with air sparging at both pH 2 and pH 5. Chloride ions increased the maximum decompositions to ~60% (~47% volatile) and ~20% (mainly nonvolatile iodine), respectively. With an initial excess of Ag+ with N2O sparging and at pH 2 and pH 5, very little volatile iodine was produced. The maximum decomposition was ~20% after ~20 kGy. Chloride ion addition at pH 2 had greatly enhanced the volatile iodine yield. The relevance of these results to the possible release of iodine to the environment following a nuclear reactor accident is discussed.