ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Robert S. Sellers, Wei-Jen Cheng, Brian C. Kelleher, Mark H. Anderson, Kumar Sridharan, Chaur-Jeng Wang, Todd R. Allen
Nuclear Technology | Volume 188 | Number 2 | November 2014 | Pages 192-199
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT13-95
Articles are hosted by Taylor and Francis Online.
Molten FLiNaK salt [46.5%LiF-11.5%NaF-42%KF (mol%)] has been proposed for use as a secondary reactor coolant and medium for transfer of high-temperature process heat from nuclear reactors to chemical plants. Two alloys—Hastelloy-N superalloy (Hastelloy-N) and Type 316L stainless steel alloy (316L steel)—were exposed to molten FLiNaK salt in a 316L steel crucible under argon cover gas at 850°C for 1000 h. Graphite was also introduced into the test with the goal of studying the corrosion behavior of relevant reactor material combinations. The results show that corrosion of 316L steel occurred primarily through surface depletion of Cr. Contrarily, Hastelloy-N experienced weight gain due to the electrochemical plating of corrosion products, Fe and Cr, derived from the 316L steel crucible. The graphite sample enhanced the corrosion of the 316L steel sample and crucible, which induced the formation of (Cr,Fe)7C3 and (Mo,Cr,Fe)2C carbides on the surface of graphite. These carbide formations were attributed to the nonelectric transfer between 316L steel and graphite. Besides reducing the availability of chromium to plate, the presence of graphite did not change the basic corrosion of the 316L steel and plating process of Hastelloy-N.