ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Man Gyun Na, Sun Ho Shin, Dong Won Jung
Nuclear Technology | Volume 150 | Number 3 | June 2005 | Pages 293-302
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT05-A3623
Articles are hosted by Taylor and Francis Online.
Venturi meters are used to measure the feedwater flow rate in most current pressurized water reactors. These meters can decrease the thermal performance of nuclear power plants because the feedwater flow rate can be overmeasured due to their fouling phenomena that make corrosion products caused by long-term operation accumulate in the feedwater flow meters. Therefore, in this paper, a software sensor using a fuzzy inference system is developed in order to increase the thermal efficiency by accurately estimating online the feedwater flow rate. The fuzzy inference system to be used for black-box modeling of the feedwater system is equipped with an automatic design algorithm that automates the selection of the input signals to the fuzzy inference system and its fuzzy rule generation including parameter optimization. The proposed algorithm was verified by using the numerical simulation data of the MARS code for Kori Nuclear Power Plant Unit 1 and also the real plant data of Yonggwang Nuclear Power Plant Unit 3. In the simulations using numerical simulation data and real plant data, the relative 2 errors and the relative maximum error are small enough. The proposed method can be applied successfully to validate and monitor the existing feedwater flow meters.