ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Gilles J. Youinou, R. Sonat Sen
Nuclear Technology | Volume 188 | Number 2 | November 2014 | Pages 123-138
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-22
Articles are hosted by Taylor and Francis Online.
This paper presents a preliminary systems analysis related to most of the currently proposed enhanced accident-tolerant fuel and cladding concepts: fully ceramic microencapsulated fuels, uranium-molybdenum fuels, uranium-nitride fuels, uranium silicide fuels, silicon carbide cladding, advanced steel cladding, and molybdenum cladding. The benefits drawn from the implementation of demonstrated accident-tolerant fuels on the future development of nuclear energy generation as well as public acceptance are difficult to quantify but would probably be very significant. The potential impacts of these innovative light water reactor fuels on the front end of the fuel cycle, on the reactor operation, and on the back end of the fuel cycle are succinctly described.