ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Adrienne L. Lehnert, Kimberlee J. Kearfott
Nuclear Technology | Volume 188 | Number 1 | October 2014 | Pages 97-111
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT11-125
Articles are hosted by Taylor and Francis Online.
Fast neutron interrogation for explosives detection has shown potential for the screening of sea-land cargo containers. Simulations were completed investigating the neutron scatter behavior of 14.1-MeV fast neutrons in such screening scenarios. Earlier efforts centered on Monte Carlo (MCNP5) simulations to identify flags or on specific calculations based on photons or neutrons produced as a result of fast neutron interaction that signal the presence of the explosive RDX (C2H6N6O6). Those simulations consisted of simplified target geometry; artificially collimated neutron source; and generalized organic, hydrogenous, or metallic types of cargo materials. In this study, the MCNP5 simulation was expanded to include a more accurate representation of the neutron source, target geometry, detector response, and realistic and varied container contents. The flags found using the earlier simulations were applied to the more realistic scenario models in order to determine the feasibility of the use of flags in a detection algorithm. Additional flags utilizing the simulated detector response were also investigated. The conditions under which specific flags were preferable were also examined. It was found that many flags performed well independent of the cargo type while others, such as those using only neutron backscatter, were more highly dependent on cargo type. Furthermore, many of the best-performing flags were those that did not require stringent neutron spectroscopy and would therefore be feasible with existing technology.