ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Adam R. Wheeler, Andrew C. Klein
Nuclear Technology | Volume 188 | Number 1 | October 2014 | Pages 45-62
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-100
Articles are hosted by Taylor and Francis Online.
The purpose of this study was to design a robust test facility for a small space nuclear power system and model its physical behavior under different scenarios. The test facility will be used to simulate a 1- to 10-kW(electric) nuclear reactor, its electrical generation, and heat removal capabilities. This simulator will be used to explore, test, and understand the steady-state and transient operation capabilities of small space nuclear power systems. Currently, the system is planned to operate on a variable, electrical heat source directly connected to heat pipes. The heat pipes are to be stainless steel with a water working fluid. These heat pipes will then be connected to a power conversion simulator or actual power conversion technologies. The power conversion simulator is connected to a radiator using a water-based heat pipe network using fins and connecting plates in a cylindrical geometry. Modeling of the facility was performed using the SolidWorks Flow Simulation package. Flow Simulation was used to analyze startup, heat pipe failures, and loss of power conversion with the end goal of finding safe operational transient scenarios for the transient test facility.