ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
J. M. O. Pinto, P. F. Frutuoso E Melo, P. L. C. Saldanha
Nuclear Technology | Volume 188 | Number 1 | October 2014 | Pages 20-33
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-48
Articles are hosted by Taylor and Francis Online.
A methodology comprising Dynamic Flowgraph Methodology (DFM) and A Technique for Human Error Analysis (ATHEANA) is applied to a digital control system proposed for the pressurizer of current pressurized water reactor plants. The methodology consists of modeling this control system and its interactions with the controlled process and operator through an integrated DFM/ATHEANA approach. The results were complemented by the opinions of experts in conjunction with fuzzy theory. In terms of human reliability, DFM, along with ATHEANA, can model equipment failure modes, operator errors (omission/commission), and human factors that, combined with plant conditions, influence human performance. The results show that the methodology provides an efficient fault analysis of digital systems identifying all possible interactions among components. Through prime implicants, the methodology shows the event combinations that lead to system failure. Quantitative results obtained are in agreement with literature data, with a few percentage value discrepancies.