ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Heba K. Louis
Nuclear Technology | Volume 188 | Number 1 | October 2014 | Pages 1-7
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-120
Articles are hosted by Taylor and Francis Online.
The lifetime of prompt neutrons is a basic characteristic of reactors since it determines the neutron kinetics of the reactor in all transient processes. This paper focuses on calculation of the prompt neutron lifetime for pressurized water reactors (PWRs). The calculation was performed using two independent methods. The first method uses the fundamental definition of the neutron lifetime with adjoint weighting that has recently been included in MCNPX. The second method is the 1/v absorber insertion method, where a 1/v absorber such as 10B is placed uniformly throughout a nuclear reactor and the change in reactivity is calculated. This prompt neutron lifetime is then extracted from the changes in the reactivity as the 10B concentration approaches zero. The results of the two methods are compared together at two points in the operation cycle [at beginning of cycle (BOC) and at end of cycle (EOC)]. The values of the prompt neutron lifetime as calculated with MCNPX are compared to values calculated with another independent method, and the results are in reasonable agreement with each other. Also, these results compared with the PWR final safety analysis report show good agreement. In the two methods of calculation, the prompt neutron lifetime was determined to be longer at EOC when compared to that at BOC.