ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Wang-Kee In, Tae-Hyun Chun
Nuclear Technology | Volume 150 | Number 3 | June 2005 | Pages 231-250
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT05-A3619
Articles are hosted by Taylor and Francis Online.
A computational fluid dynamics (CFD) analysis has been performed to assess the Reynolds Average Navier-Stokes (RANS) turbulence models to predict a turbulent flow and heat transfer in a triangular rod bundle with pitch-to-diameter ratios (P/Ds) of 1.06 and 1.12. The CFD predictions using various turbulence models were compared with experimental results. Anisotropic turbulence models such as the nonlinear k - [curly epsilon] and the second-order closure models predicted the turbulence-driven secondary flow in the triangular channel and the distributions of the time mean velocity and temperature showing significantly improved agreement with the measurements from the linear standard k - [curly epsilon] model. The anisotropic turbulence models predicted the turbulence structure for a rod bundle with a large P/D fairly well but could not predict the very high turbulence intensity of the azimuthal velocity observed in the narrow flow region (gap) for a rod bundle with a small P/D.