ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Sherif S. Nafee
Nuclear Technology | Volume 187 | Number 3 | September 2014 | Pages 328-336
Technical Note | Radiation Transport and Protection | doi.org/10.13182/NT13-106
Articles are hosted by Taylor and Francis Online.
The calibration of high-purity germanium gamma-ray cylindrical detectors using bar (parallelepiped) sources is carried out analytically using the probability correction approach. Improved expressions for the source self-attenuation coefficient have been included in the present algorithm based on the accurate calculation of all possible path lengths covered by the gamma ray inside the bulky source. Moreover, the full-energy peak attenuation coefficient μp is included in the present algorithm. The sources were positioned at long distances from the detector window so that the coincidence summing effects could be neglected. Remarkable agreement between the measured efficiency values and the corrected efficiency values calculated by the present technique was observed. The percentage relative differences for the results calculated in this way from experimental values are at least 25% smaller than those observed and reported by the direct mathematical method in previous work.