ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Sherif S. Nafee
Nuclear Technology | Volume 187 | Number 3 | September 2014 | Pages 328-336
Technical Note | Radiation Transport and Protection | doi.org/10.13182/NT13-106
Articles are hosted by Taylor and Francis Online.
The calibration of high-purity germanium gamma-ray cylindrical detectors using bar (parallelepiped) sources is carried out analytically using the probability correction approach. Improved expressions for the source self-attenuation coefficient have been included in the present algorithm based on the accurate calculation of all possible path lengths covered by the gamma ray inside the bulky source. Moreover, the full-energy peak attenuation coefficient μp is included in the present algorithm. The sources were positioned at long distances from the detector window so that the coincidence summing effects could be neglected. Remarkable agreement between the measured efficiency values and the corrected efficiency values calculated by the present technique was observed. The percentage relative differences for the results calculated in this way from experimental values are at least 25% smaller than those observed and reported by the direct mathematical method in previous work.