ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Masato Takahashi, Kenichi Yoshioka
Nuclear Technology | Volume 187 | Number 3 | September 2014 | Pages 316-327
Technical Paper | Reactor Safety | doi.org/10.13182/NT13-114
Articles are hosted by Taylor and Francis Online.
The three radioactive isotopes of 134Cs, 136Cs, and 137Cs related to the boiling water reactor (BWR) accident at the units of the Fukushima Daiichi nuclear power plant (NPP) have been measured in samples obtained from NPPs around the area and from inside the Fukushima Daiichi buildings. Numerical calculations with sensitivity analyses were carried out to estimate the cesium (Cs) isotope composition in the BWR core, and the origins of the Cs in the samples were clarified based on numerical calculations. Most of the measured Cs radioactivity data suggest that Cs was released from the homogenized state among fuel bundles with different irradiation histories in the core. The origins of the large 134Cs/136Cs ratios in the Unit 2 spent fuel pool (SFP) suggest two possibilities. One possibility is the existence of a partial release process from the fuel bundles located in the peripheral core region, and the other is damage to the fuel placed in the SFP.