ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Travis A. Cunning, Paul Chan, Mahesh D. Pandey, Aniket Pant
Nuclear Technology | Volume 187 | Number 3 | September 2014 | Pages 270-281
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-126
Articles are hosted by Taylor and Francis Online.
This study employs a novel approach to the prediction of CANDU [Canada deuterium uranium (reactor)] fuel reliability. Probability distributions are fitted to actual fuel manufacturing data sets provided by Cameco Fuel Manufacturing. They are used to form input for two industry-standard fuel performance codes: ELESTRES for the steady-state case and ELOCA for the transient case—a hypothesized 80% reactor outlet header break loss-of-coolant accident. Using a Monte Carlo technique for input generation, 105 independent trials are conducted, and probability distributions are fitted to key model output quantities. Comparing model output against recognized industrial acceptance criteria, no fuel failures are predicted for either case. Output distributions are well removed from failure limit values, implying that margin exists in current fuel manufacturing and design. To validate the results and attempt to reduce the simulation burden of the methodology, two dimensional reduction methods are assessed. Using just 36 trials, both methods are able to produce output distributions that agree strongly with those obtained via the brute-force Monte Carlo method, often to a relative discrepancy of <0.3% when predicting the first statistical moment and to a relative discrepancy of <5% when predicting the second statistical moment. In terms of global sensitivity, pellet density proves to have the greatest impact on fuel performance, with an average sensitivity index of 48.93% on key output quantities. Pellet grain size and dish depth are also significant contributors, at 31.53% and 13.46%, respectively. A traditional “limit of operating envelope” case is also evaluated. This case produces output values that exceed the maximum values observed during the 105 Monte Carlo trials for all output quantities of interest. In many cases the difference between the predictions of the statistical methods and the limit method is very prominent, and the highly conservative nature of the deterministic approach is demonstrated.