ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Travis A. Cunning, Paul Chan, Mahesh D. Pandey, Aniket Pant
Nuclear Technology | Volume 187 | Number 3 | September 2014 | Pages 270-281
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-126
Articles are hosted by Taylor and Francis Online.
This study employs a novel approach to the prediction of CANDU [Canada deuterium uranium (reactor)] fuel reliability. Probability distributions are fitted to actual fuel manufacturing data sets provided by Cameco Fuel Manufacturing. They are used to form input for two industry-standard fuel performance codes: ELESTRES for the steady-state case and ELOCA for the transient case—a hypothesized 80% reactor outlet header break loss-of-coolant accident. Using a Monte Carlo technique for input generation, 105 independent trials are conducted, and probability distributions are fitted to key model output quantities. Comparing model output against recognized industrial acceptance criteria, no fuel failures are predicted for either case. Output distributions are well removed from failure limit values, implying that margin exists in current fuel manufacturing and design. To validate the results and attempt to reduce the simulation burden of the methodology, two dimensional reduction methods are assessed. Using just 36 trials, both methods are able to produce output distributions that agree strongly with those obtained via the brute-force Monte Carlo method, often to a relative discrepancy of <0.3% when predicting the first statistical moment and to a relative discrepancy of <5% when predicting the second statistical moment. In terms of global sensitivity, pellet density proves to have the greatest impact on fuel performance, with an average sensitivity index of 48.93% on key output quantities. Pellet grain size and dish depth are also significant contributors, at 31.53% and 13.46%, respectively. A traditional “limit of operating envelope” case is also evaluated. This case produces output values that exceed the maximum values observed during the 105 Monte Carlo trials for all output quantities of interest. In many cases the difference between the predictions of the statistical methods and the limit method is very prominent, and the highly conservative nature of the deterministic approach is demonstrated.