ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Pengfei Wang, Jiashuang Wan, Shoujun Yan, Yang Liu, Fuyu Zhao
Nuclear Technology | Volume 187 | Number 3 | September 2014 | Pages 243-259
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-111
Articles are hosted by Taylor and Francis Online.
This paper presents the performance evaluation of an improved mechanical shim (MSHIM) control strategy that is implemented in the AP1000 reactor by a digital rod control system. The MSHIM control system automatically controls the core reactivity and axial power distribution using gray and black M control banks (M-banks) and an axial offset (AO) control bank (AO-bank). The M-banks and AO-bank are independently controlled by the power control subsystem and the AO control subsystem. In the original MSHIM strategy, the power control subsystem takes precedence, and the AO-bank is blocked from moving when a demand signal exists for the movement of the M-banks. This rod control logic can minimize the potential for interactions between the two rod control subsystems and guarantee the safety and stability of the MSHIM control system. However, the AO control capability is weakened at the same time. Thus, Westinghouse has improved this core control strategy, which gives preference to the AO-bank when both the AO-bank and the M-banks have a demand to move in the same direction. In this paper, first, the coupling characteristic of the MSHIM control strategy is analyzed to illustrate the coupling effect between the two rod control subsystems. Then, both the original and the improved MSHIM control strategies are applied to AP1000. It has been demonstrated by the MSHIM load-follow and load regulation simulation results that the improved strategy not only can provide much tighter AO control but also can reduce the total control rod movement without compromising the coolant average temperature control. Therefore, the improved MSHIM strategy can provide much better reactor control capabilities than the original strategy.