ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Hirokazu Ohta, Takanari Ogata, Toru Obara
Nuclear Technology | Volume 187 | Number 2 | August 2014 | Pages 198-207
Regular Technical Paper | Fission Reactors | doi.org/10.13182/NT13-105
Articles are hosted by Taylor and Francis Online.
Innovative fuel design measures to attain a much higher burnup than that obtained using the conventional concept were investigated for a fast reactor (FR) metal fuel. Considering the typical mechanism of metal fuel degradation, three innovative design measures were proposed: (a) a decrease in plenum pressure by adopting the fission gas vent design, (b) prevention of fuel-cladding chemical interaction by lining the cladding inner wall, and (c) mitigation of fuel-cladding mechanical interaction by reducing the fuel smear density. The effects of these design measures on increasing the burnup were analyzed with ALFUS, an irradiation behavior analysis code for FR metal fuels. The ALFUS analysis revealed that a very high burnup of >40 at. % can be attained under the conventional design criteria for securing fuel integrity by applying these innovative measures. Neutronic analysis of a metal fuel core employing these design measures indicated that a high burnup of >40 at. % at the assembly peak can be attained while suppressing the burnup reactivity swing to almost the same level as that of conventional cores with normal burnup through the use of a minor actinide–containing fuel.