ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Philipp Schaedle, Nicolas Hubschwerlen, Holger Class
Nuclear Technology | Volume 187 | Number 2 | August 2014 | Pages 188-197
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT13-82
Articles are hosted by Taylor and Francis Online.
The long-term safety performance of a potential deep geological repository for high-level and intermediate-level long-lived nuclear waste is studied through a numerical simulation program that requires simulation tools capable of modeling appropriately the phenomenologies of interest in the repository and its environment. Because of the complexity of the modeled layout, the numerous physical processes involved, and the simulated times (up to one million years), the computational needs are very high. TOUGH2-MP is a very suitable tool for modeling the impact that the heat and gas generated in the emplacement areas may have on the evolution of the fluid pressure and on the saturation fields in the repository's drifts and shafts as well as in the host rock itself. The module EOS7R also gives the possibility to compute a coupled radionuclide transfer. Regarding computational efficiency, it is of interest to decouple the transport from the hydraulic calculation for three main reasons. First, this allows the hydraulic calculation to be used once for several transport computations of a performance analysis and safety assessment study, which is expected to lead to a substantial gain in CPU time. Second, it allows optimization of the discretization separately for both hydraulic and transport calculations. Third, it allows combination of the TOUGH2 hydraulic and other codes modeling radionuclide transport, which allows consideration of phenomenologies that are not available in TOUGH2. This work shows how to establish a sequential approach between TOUGH2 and another code. It presents the conditions of use of such an approach, in terms of performance and the impact of the temporal discretization on the results.