ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Philipp Schaedle, Nicolas Hubschwerlen, Holger Class
Nuclear Technology | Volume 187 | Number 2 | August 2014 | Pages 188-197
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT13-82
Articles are hosted by Taylor and Francis Online.
The long-term safety performance of a potential deep geological repository for high-level and intermediate-level long-lived nuclear waste is studied through a numerical simulation program that requires simulation tools capable of modeling appropriately the phenomenologies of interest in the repository and its environment. Because of the complexity of the modeled layout, the numerous physical processes involved, and the simulated times (up to one million years), the computational needs are very high. TOUGH2-MP is a very suitable tool for modeling the impact that the heat and gas generated in the emplacement areas may have on the evolution of the fluid pressure and on the saturation fields in the repository's drifts and shafts as well as in the host rock itself. The module EOS7R also gives the possibility to compute a coupled radionuclide transfer. Regarding computational efficiency, it is of interest to decouple the transport from the hydraulic calculation for three main reasons. First, this allows the hydraulic calculation to be used once for several transport computations of a performance analysis and safety assessment study, which is expected to lead to a substantial gain in CPU time. Second, it allows optimization of the discretization separately for both hydraulic and transport calculations. Third, it allows combination of the TOUGH2 hydraulic and other codes modeling radionuclide transport, which allows consideration of phenomenologies that are not available in TOUGH2. This work shows how to establish a sequential approach between TOUGH2 and another code. It presents the conditions of use of such an approach, in terms of performance and the impact of the temporal discretization on the results.