ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
John Avis, Paul Suckling, Nicola Calder, Robert Walsh, Paul Humphreys, Fraser King
Nuclear Technology | Volume 187 | Number 2 | August 2014 | Pages 175-187
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT13-83
Articles are hosted by Taylor and Francis Online.
Deep geologic disposal of radioactive waste is being planned in a number of international programs. Within a deep geologic repository (DGR), gases can be generated by corrosion of metals and degradation of organics. Reactions, and thus gas generation rates, are dependent upon pressures, temperature, and the availability of water or water vapor within the repository. Furthermore, many reactions consume water. Consumption rates and repository state are not known a priori and are in general coupled processes. A numeric model of coupled gas generation and transport has been developed and implemented in the T2GGM code. T2GGM consists of a gas generation model (GGM), which calculates rates of gas generation and water consumption within the DGR due to corrosion and microbial degradation of the waste packages, integrated with the widely used two-phase-flow code TOUGH2, which models the subsequent two-phase transport of the water and gas through the repository and into the DGR shafts and geosphere. T2GGM has been applied to assess gas transport from a proposed low- and intermediate-level radioactive waste DGR and to study the impact of container corrosion in a hypothetical used fuel DGR.