ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Aku Itälä, Mika Laitinen, Merja Tanhua-Tyrkkö, Markus Olin
Nuclear Technology | Volume 187 | Number 2 | August 2014 | Pages 169-174
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT13-79
Articles are hosted by Taylor and Francis Online.
The bentonite barrier is an essential part of a safe spent fuel repository in granitic bedrock. One of the most important safety functions of bentonite buffer is to limit groundwater flow so that all mass transport takes place by diffusion. In this work a new mathematical model was developed to define the transport of ions inside the bentonite, where there are bound interlayer water and free extra layer water and sorption capability. This model is tested in a specified geometry and calculated by two numerical platforms—Numerrin and COMSOL Multiphysics—and compared to the original TOUGHREACT model. The model comparison was not a straightforward task because of different approaches in the model setup. Therefore, all the equations are written down, and parameterization is done to create model descriptions near each other. The developed model adapts easily, and there are many new ideas to be tested in bridging the gap between performance assessment and real systems.