ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Zhen Wang, Jonny Rutqvist, Yuan Wang, Colin Leung, Andrew Hoch, Ying Dai
Nuclear Technology | Volume 187 | Number 2 | August 2014 | Pages 158-168
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT13-76
Articles are hosted by Taylor and Francis Online.
We present an extended multiple interacting continua (Ex-MINC) model of fractured rock masses that uses Oda's crack tensor theory to upscale the hydraulic and mechanical properties. The Ex-MINC concept includes separate connected continua representing active fractures, inactive fractures, and matrix to represent the fracture-matrix system. The crack tensor theory was used to calculate the stress-dependent permeability tensor and compliance tensor for individual grid blocks. By doing this, we transformed a discrete fracture network model into a grid-based continuum model. The Ex-MINC model was verified against an existing analytical solution, and the entire Ex-MINC/crack tensor model approach was applied to a benchmark test (BMT) related to coupled stress, fluid flow, and transport through a 20-×20-m model domain of heavily fractured media. This BMT was part of the international DECOVALEX project for the development of coupled models and their validation, thus providing us with the opportunity to compare our results with the results of independent models. We conducted the coupled hydraulic and mechanical modeling with TOUGH-FLAC, a simulator based on the TOUGH2 multiphase flow code and the FLAC3D geomechanical code. The results of our simulations were generally consistent with the results of the other independent modeling approaches and showed how inactive fractures impeded solute transport through the fractured system by providing an additional fracture surface area as an avenue for increasing fracture matrix diffusion.