ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Benoît Dessirier, Jerker Jarsjö, Andrew Frampton
Nuclear Technology | Volume 187 | Number 2 | August 2014 | Pages 147-157
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT13-77
Articles are hosted by Taylor and Francis Online.
Deep geological repositories are generally considered as suitable environments for final disposal of spent nuclear fuel. In the Swedish and Finnish repository design concept, canisters are to be placed in deep underground tunnels in sparsely fractured crystalline bedrock, in deposition holes in which each canister is embedded with an expansive bentonite-clay-mixture buffer. A set of semigeneric two-dimensional radially symmetric TOUGH2 simulations are conducted to investigate the multiphase dynamics and interactions between water and air in a bentonite-rock environment. The main objective is to identify how sensitive saturation times of bentonite are to the geometry of the rock fractures and to commonly adopted simplifications in the unsaturated flow description such as Richards assumptions. Results show that the location of the intersection between the fracture system and the deposition hole is a key factor affecting saturation times. A potential long-lasting desaturation of the rock matrix close to the bentonite-rock interface is also identified extending up to 10 cm inside the rock. Two-phase-flow models predict systematically longer saturation times compared to a simplified Richards approximation, which is frequently used to represent unsaturated flows. The discrepancy diverges considerably as full saturation is approached.