ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Th. U. Kaempfer, Y. Mishin, J. Brommundt, J. Roger, E. Treille, and N. Hubschwerlen
Nuclear Technology | Volume 187 | Number 2 | August 2014 | Pages 131-146
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT13-80
Articles are hosted by Taylor and Francis Online.
Numerical simulation of multiphase flow and transport processes forms an important base for the assessment of deep geological repositories for radioactive waste. The finite volume simulation code TOUGH2-MP with its EOS7R equation-of-state module is a good starting point for large-scale simulations of the relevant processes, including solute transport of radionuclides, in and around a geological repository. On this base, we developed the equation-of-state module EOS75Rx that contains optimizations and specific extensions allowing for a much more efficient treatment of the problem at hand. First, hydrogen, which is formed by corrosion of waste containers and by radiolysis of organic wastes, replaces air as the main component of the gas phase. Second, an arbitrary number of variably long decay chains with branching can be considered. Third, solubility limitation and associated precipitation of chemical elements are modeled. Finally, a bug fix related to the source terms has been implemented. The new TOUGH2-MP EOS75Rx module has been validated using unitary tests and benchmark problems for the single- and two-phase flow and transport of radionuclides through porous media and soils. Its performance has been demonstrated by a large-scale, three-dimensional simulation of the performance of a generic deep geological repository in clay host rock.