ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Manuel Lorenzo Sentís
Nuclear Technology | Volume 187 | Number 2 | August 2014 | Pages 117-130
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT13-84
Articles are hosted by Taylor and Francis Online.
FORGE (Fate of Repository Gases) is an international research project supported by funding under the European Commission FP7 Euratom program and lasting four years from 2009 to 2013. The project is dedicated to understanding gas generation and migration as part of the quantitative assessment of a geological repository for radioactive waste. Within the FORGE project, Work Package 1 is dedicated to numerical modeling of a two-phase flow system (hydrogen gas due to corrosion and groundwater) in a geological repository for radioactive waste. Several benchmark exercises were proposed that cover the modeling of a deep geological repository from the disposal cell scale to the repository scale with different codes. During the definition of the exercises, special emphasis was given to the roles of the excavation-disturbed zone and of the interfaces between materials, which could act as a conduit for preferential flow. Some changes were made in the TOUGH2 code to enable the implementation of the prescribed conditions, models, and parameters of the benchmark. The results of the calculations performed with different codes show that TOUGH2 gives comparable results under the numerically challenging conditions defined in the exercise. Some differences were observed resulting from the use of different codes and also from some simplifications in the parameters and models adopted by the participating teams. In this paper, the cell-scale benchmark exercise and the results obtained by the Swiss Federal Nuclear Safety Inspectorate (ENSI) with TOUGH2 will be described, together with some difficulties encountered during the simulation, e.g., convergence problems. The results of other teams participating in the benchmark are in good agreement with the ENSI results.