ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Longcheng Liu, Ivars Neretnieks
Nuclear Technology | Volume 150 | Number 2 | May 2005 | Pages 132-144
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT05-A3611
Articles are hosted by Taylor and Francis Online.
A multitude of simulations have been made for different types of rough-walled fractures, by using FEMLAB®, to evaluate the mass transfer to and from water flowing through a fracture with spatially variable apertures and with an arbitrary angle of intersection to a canister that contains spent nuclear fuel. This paper presents and discusses only the results obtained for the Gaussian fractures.The simulations suggest that the intersection angle has only a minor influence on both the volumetric and the equivalent flow rates. The standard deviation of the distribution of the volumetric flow rates of the many realizations increases with increasing roughness and spatial correlation length of the aperture field, and so does that of the equivalent flow rates. The mean of the distribution of the volumetric flow rates is determined, however, solely by the hydraulic aperture, while that of the equivalent flow rates is determined by the mechanical aperture.Based upon the analytical solutions for the parallel plate model, it has been found that the distributions of both the volumetric and the equivalent flow rates are close to the Normal. Thus, two simple expressions can be devised to quantify the stochastic properties of fluid flow and solute transport through spatially variable fractures without making detailed calculations in every fracture intersecting a deposition hole or a tunnel.