ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ikuo Kinoshita, Michio Murase, Yoichi Utanohara, Dirk Lucas, Christophe Vallée, and Akio Tomiyama
Nuclear Technology | Volume 187 | Number 1 | July 2014 | Pages 44-56
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-32
Articles are hosted by Taylor and Francis Online.
A numerical study is presented to examine the effects on countercurrent flow limitation (CCFL) of the shape and size of hot leg models with a rectangular cross section. The CCFL was described in terms of Wallis parameters using the channel height H as the characteristic length. Numerical simulations, using the computational fluid dynamics software code FLUENT 6.3.26, were done for the air-water CCFL experiments carried out previously at Helmholtz-Zentrum Dresden-Rossendorf in a 1/3-scale hot leg model with a rectangular channel (H×W = 0.25×0.05 m2), and the results were compared with the air-water CCFL data obtained at Kobe University in a 1/5-scale hot leg model with rectangular cross section (H×W = 0.15×0.01 m2) and the results of simulations. It was found that both the height-to-width ratio and the size of the cross section affected the CCFL characteristics in the Wallis diagram. Comparison of CCFL characteristics in rectangular channels with those in circular channels showed that the hydraulic diameter Dh was a major cross-section geometry term influencing the CCFL characteristics. CCFL constants of the Wallis correlation were ∼0.61 on average for the range 0.05 m ≤ Dh ≤ 0.75 m but became small for Dh ≤ 0.0254 m, and these tendencies were well reproduced by the numerical simulations.