ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Mie Azuma, Atsushi Taniguchi, Akitoshi Hotta, Takeshi Ohta
Nuclear Technology | Volume 149 | Number 3 | March 2005 | Pages 243-252
Technical Paper | Fission Reactors | doi.org/10.13182/NT05-A3593
Articles are hosted by Taylor and Francis Online.
The integrity of the reactor pressure vessel (RPV) head and reactor internals was assessed by means of fluid and fluid-structural coupled analyses to evaluate the water hammer phenomenon arising from postulated high burnup fuel failure under reactivity initiated accident (RIA) conditions. The fluid viscosity effect on the water column burst as well as the complex three-dimensional flow paths caused by a core shroud and standpipes were considered in this study. It is shown that fluid viscosity becomes an influential factor to dissipate impacting kinetic energy. Integrity of the RPV head and the shroud head was ensured with a sufficient level of margin even under these excessively conservative RIA conditions.