ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Yuezhou Wei, Tsuyoshi Arai, Harutaka Hoshi, Mikio Kumagai, Aimé Bruggeman, Patrick Goethals
Nuclear Technology | Volume 149 | Number 2 | February 2005 | Pages 217-231
Technical Paper | Reprocessing | doi.org/10.13182/NT05-A3591
Articles are hosted by Taylor and Francis Online.
We have studied a new aqueous reprocessing system that consists of anion exchange as the main separation method, electrolytic reduction for reducing U(VI) to U(IV), and extraction chromatography for minor actinide partitioning. In this work, hot tests were carried out on the main flow sheet (U and Pu recovery) using a nitric acid solution of a spent commercial boiling water reactor fuel with burnup of 55 000 MWd/t HM. First, a separation experiment was conducted using a column packed with AR-01 anion exchanger, and the separation behavior of about 20 elements was examined. Then electrolytic reduction was performed for the U(VI) eluate from the first column using a flow-type electrolysis cell. Subsequently, the reduced U solution was applied to the second AR-01 column to separate the U(IV) from contaminated fission products. Most amounts of Pu(IV)-Np(IV), were successfully separated and recovered in the first column. In the electrolysis, U(VI), Np(V,VI), and a trace amount of Pu(VI) were reduced to U(IV), Np(IV), and Pu(IV), respectively. In the second column, the U(IV) with small amounts of Np(IV) and Pu(IV) was completely separated from the fission products. These results demonstrated that the proposed U and Pu recovery process is essentially feasible, though more effective elution methods for Pd and Tc need to be investigated further.