ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reviewers needed for NRC research proposals
The deadline is fast approaching for submitting an application to become a technical reviewer for the Nuclear Regulatory Commission’s fiscal year 2025 research grant proposals.
Yong Soo Kim, Chang Hwan Park, Byoung Uhn Bae, Goon Cherl Park, Kune Yull Suh, Un Chul Lee
Nuclear Technology | Volume 149 | Number 2 | February 2005 | Pages 200-216
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT05-A3590
Articles are hosted by Taylor and Francis Online.
This study concerns the development of an integrated calculation methodology with which to continually and consistently analyze the progression of an accident from the design-basis accident phase via core uncovery to the severe accident phase. The depletion rate of reactor coolant inventory was experimentally investigated after the safety injection failure during a large-break loss-of-coolant accident utilizing the Seoul National University Integral Test Facility (SNUF), which is scaled down to 1/6.4 in length and 1/178 in area from the APR1400 [Advanced Power Reactor 1400 MW(electric)]. The experimental results showed that the core coolant inventory decreased five times faster before than after the extinction of sweepout in the reactor downcomer, which is induced by the incoming steam from the intact cold legs. The sweepout occurred on top of the spillover from the downcomer region and expedited depletion of the core coolant inventory. The test result was simulated with the MAAP4 severe accident analysis code. The calculation results of the original MAAP4 deviated from the test data in terms of coolant inventory distribution in the test vessel. After the calculation algorithm of coolant level distribution was improved by including the subroutine of pseudo pressure buildup, which accounts for the differential pressure between the core and downcomer in MAAP4, the core melt progression was delayed by hundreds of seconds, and the code prediction was in reasonable agreement with the overall behavior of the SNUF experiment.