ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reviewers needed for NRC research proposals
The deadline is fast approaching for submitting an application to become a technical reviewer for the Nuclear Regulatory Commission’s fiscal year 2025 research grant proposals.
S. Massara, J. Tommasi, M. Vanier, O. Köberl
Nuclear Technology | Volume 149 | Number 2 | February 2005 | Pages 150-174
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT05-A3587
Articles are hosted by Taylor and Francis Online.
Fast spectrum minor actinide (MA) burner designs, with high minor actinide loads and consumptions, have been assessed. As reactivity and kinetic coefficients are poor in such cores (low delayed neutron fraction and Doppler feedback, high coolant void coefficient), special attention has been paid to their dynamic behavior during transient conditions. A dynamics code, MAT4 DYN, has been expressly developed to study loss-of-flow, reactivity insertion, and loss-of-coolant accidents. It takes into account two fuel geometries (cylindrical and spherical) and two thermal-hydraulics models for the coolant (incompressible for liquid metals and compressible for helium).Three nitride-fuel configurations are analyzed according to their coolant: sodium and lead (both with pin fuel) and helium (with particle fuel). Dynamics calculations show that if the fuel nature is appropriately chosen, with sufficient margins during transients, then this can counterbalance the poor reactivity coefficients for liquid-metal-cooled cores, thus proving the interest of this kind of concept. On the other hand, the gas-cooled core dynamics is very badly affected by the high value of the helium void coefficient in a hard spectrum, this effect being amplified by the very low thermal inertia of the fuel particles. Hence, concepts other than a particle-bed fuel should be investigated for a helium-cooled fast-spectrum MA burner.