ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Kwang-Yong Kim, Jun-Woo Seo
Nuclear Technology | Volume 149 | Number 1 | January 2005 | Pages 62-70
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT05-A3579
Articles are hosted by Taylor and Francis Online.
In the present work, the shape of a mixing vane in a pressurized water reactor fuel assembly has been optimized numerically using three-dimensional Reynolds-averaged Navier-Stokes analysis of the flow and heat transfer to find the effects of flow characteristics downstream of the mixing vane on heat transfer augmentation and also to optimize the shape of the mixing vane to increase the resistance to departure from nucleate boiling by enhancing the heat transfer without excessive pressure loss. The response surface method is employed as an optimization technique. The objective function is defined as a combination of the heat transfer rate and the inverse of friction loss with weighting factor. The bend angle and base length of the mixing vane are selected as design variables. In most of the numerical experiments, both the heat transfer and friction loss are enhanced as the bend angle and base length increase. The swirl and cross-flow characteristics and thermal-hydraulic performances of different shapes of mixing vane are discussed. From the results, the close relationship between the swirl factor and the heat transfer rate has been found. In the specified ranges of the design variables, the sensitivity of the objective function to the base length is only about one-tenth of the sensitivity to the bend angle. Nine points for numerical experiments were sufficient for construction of a reliable response surface. The optimum shape has been obtained as a function of the weighting factor in the objective function.