ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Ser Gi Hong, Ehud Greenspan, Yeong Il Kim
Nuclear Technology | Volume 149 | Number 1 | January 2005 | Pages 22-48
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT05-A3577
Articles are hosted by Taylor and Francis Online.
A once-for-life, uniform composition, blanket-free and fuel-shuffling-free reference core has been designed for the Encapsulated Nuclear Heat Source (ENHS) to provide the design goals of a nearly zero burnup reactivity swing throughout ~20 yr of full-power operation up to the peak discharge burnup of more than 100 GWd/t HM. What limits the core life is radiation damage to the HT-9 structural material. The temperature coefficients of reactivity are all negative, except for that of the coolant expansion. However, the negative reactivity coefficient associated with the radial expansion of the core structure can compensate for the coolant thermal expansion. The void coefficient is positive but of no safety concern because the boiling temperature of lead or lead-bismuth is so high that there is no conceivable mechanism for the introduction of significant void fraction into the core. The core reactivity coefficients, reactivity worth, and power distributions are almost constant throughout the core life.It was found possible to design such once-for-life cores using different qualities of Pu and transuranics as long as U is used as the primary fertile material. It is also feasible to design ENHS cores using nitride rather than metallic fuel. Relative to the reference metallic fuel core, nitride fuel cores offer up to ~25% higher discharge burnup and longer life, up to ~38% more energy per core, a significantly more negative Doppler reactivity coefficient, and less positive coolant expansion and coolant void reactivity coefficient but a somewhat smaller negative fuel expansion reactivity coefficient. The pitch-to-diameter ratio (1.45 of the nitride fuel cores using enriched N) is larger than that (1.36) for the reference metallic fuel core, implying a reduction of the coolant friction loss, thus enabling an increase in the power level that can be removed from the core by natural circulation cooling.It is also possible to design Pu-U(10Zr) fueled ENHS-type cores using Na as the primary coolant with either Na or Pb-Bi secondary coolants. The Na-cooled cores feature a tighter lattice and are therefore more compact but have spikier power distribution, more positive coolant temperature reactivity coefficients, and smaller reactivity worth of the control elements.