ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Marko Maucec, Bogdan Glumac
Nuclear Technology | Volume 149 | Number 1 | January 2005 | Pages 1-13
Technical Paper | Reactor Safety | doi.org/10.13182/NT05-A3575
Articles are hosted by Taylor and Francis Online.
Monte Carlo criticality safety and sensitivity calculations of pressurized water reactor (PWR) spent nuclear fuel repository facilities for the Slovenian nuclear power plant Krsko are presented. The MCNP4C code was deployed to model and assess the neutron multiplication parameters of pool-based storage and dry transport containers under various loading patterns and moderating conditions. To comply with standard safety requirements, fresh 4.25% enriched nuclear fuel was assumed. The impact of potential optimum moderation due to water steam or foam formation as well as of different interpretations, of neutron multiplication through varying the system boundary conditions was elaborated. The simulations indicate that in the case of compact (all rack locations filled with fresh fuel) single or "double tiering" loading, the supercriticality can occur under the conditions of enhanced neutron moderation, due to accidentally reduced density of cooling water. Under standard operational conditions the effective multiplication factor (keff) of pool-based storage facility remains below the specified safety limit of 0.95. The nuclear safety requirements are fulfilled even when the fuel elements are arranged at a minimal distance, which can be initiated, for example, by an earthquake. The dry container in its recommended loading scheme with 26 fuel elements represents a safe alternative for the repository of fresh fuel. Even in the case of complete water flooding, the keff remains below the specified safety level of 0.98. The criticality safety limit may however be exceeded with larger amounts of loaded fuel assemblies (i.e., 32). Additional Monte Carlo criticality safety analyses are scheduled to consider the "burnup credit" of PWR spent nuclear fuel, based on the ongoing calculation of typical burnup activities.