ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yu-Huai Shih, Shih-Jen Wang, Kai-Cheng Chuang, Tzu-En Huang
Nuclear Technology | Volume 186 | Number 3 | June 2014 | Pages 340-352
Technical Paper | Reactor Safety | doi.org/10.13182/NT12-145
Articles are hosted by Taylor and Francis Online.
The Fukushima Daiichi accident occurred on March 11, 2011. A seismic event and tsunami induced an extended station blackout plus loss of the ultimate heat sink. Three units progressed into a core melt severe accident. The accident occurred in the emergency operation procedure (EOP) domain. However, this situation was already beyond the scope of an EOP. The operator followed the EOP faithfully, and a core melt situation still occurred. An interesting topic is whether it is possible to avoid this type of accident. The purpose of this study is to survey the Fukushima accident progression with respect to the effect of the containment venting strategy for the Chinshan Nuclear Power Plant EOPs. Under the emergency situation, only a small reactor pressure vessel (RPV) injection system was available. This type of accident may be avoided by an early shift from the EOP to the severe accident guideline (SAG), switching from high-pressure injection to low-pressure injection while the reactor core isolation cooling system is available, gradually lowering the RPV pressure, and maximizing the injection flow rate. The plant responses and accident physical phenomena were simulated using MAAP5. The results show that the consequences of an uncovered core and core melt can be avoided by adopting the proper RPV depressurization and containment venting strategy.