ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jia (Jason) Hou, Hangbok Choi, Kostadin Ivanov
Nuclear Technology | Volume 186 | Number 3 | June 2014 | Pages 305-316
Technical Paper | Fission Reactors | doi.org/10.13182/NT12-137
Articles are hosted by Taylor and Francis Online.
A lattice code, MICROX-2, was assessed for its neutronics calculation performance with new cross-section libraries. First, the new cross-section libraries were generated based on ENDF/B-VII release 0. A total of 386 nuclides were processed, including 10 thermal scattering nuclides. The updated NJOY system and MICROR code were used to process nuclear data and convert them into the MICROX-2 library format. The energy group structure of the new library was optimized for both the thermal and fast neutron spectrum systems based on the Contributon and Pointwise Cross Section Driven (CPXSD) method, resulting in a total of 1173 energy groups. Second, a series of pin-cell–level benchmark calculations was performed against experimental measurements and numerical calculations performed by the deterministic and Monte Carlo codes for multiplication factors and reaction rate ratios. Both the homogeneous and heterogeneous pin-cell calculations were conducted for 15 cases. The results of MICROX-2 calculations show good agreement with the reference values. The arithmetic average errors of k∞ for the homogeneous and heterogeneous lattices are 0.30% and 0.44%, respectively. For the finite lattices (five cases for water reactor fuels), the average error of keff is 0.32%. These errors are due to the combined effect of the solution method and the cross-section library. Especially for the fast reactor cases, the prediction of the physics parameter by MICROX-2 deteriorates when the fuel volume increases, which is mostly due to the simplified resonance self-shielding model.