ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Vaclav Tyrpekl, Pascal Piluso, Snejana Bakardjieva, Olivier Dugne
Nuclear Technology | Volume 186 | Number 2 | May 2014 | Pages 229-240
Technical Paper | Reactor Safety | doi.org/10.13182/NT13-63
Articles are hosted by Taylor and Francis Online.
During a severe accident sequence in a pressurized light water reactor, the hot (∼3000 K) molten materials (corium) coming from the degraded reactor core may generate a violent interaction if they come in contact with water. This melt-water interaction, called fuel-coolant interaction (FCI), may damage the structures and threaten the reactor integrity if there is a steam explosion. FCI occurs generally in two phases: a premixing phase, during which the molten corium jet is fragmented into large droplets and mixed with the water, and the explosion phase, during which the vapor film that has developed around the fuel droplets is destabilized and the droplets are finely fragmented. The presented work covers a set of experimental studies describing the morphology and nature of the solidified materials after interaction with water. Debris from experiments performed in the KROTOS (Commissariat à l'Énergie Atomique, Cadarache, France); PREMIX, ECO (Karlsruhe Institute of Technology, Karlsruhe, Germany); and MISTEE (Royal Institute of Technology, Stockholm, Sweden) facilities have been characterized by metallographic, analytical, and microscopic techniques. These post-test analyses are able to provide important information on the solidification path and other main phenomena involved during FCI. It was found that the behavior of metallic and oxide melts differs significantly from the standpoint of debris morphology. Oxide melts that underwent simple coarse fragmentation showed spherical or angular rocklike shape, unlike metallic melts. A statistical analysis was performed on the debris from the KROTOS tests; a data set of particles was described by the circularity, solidity, and porosity. The mechanism of water ingression (Kim and Corradini) inside the melt droplet was observed to be the key mechanism of fine (secondary) fragmentation. The particles participating in fine “thermal” fragmentation have significantly higher porosity, up to ∼30% for prototypic corium in the KROTOS facility. It was calculated that only a part of the premixed melt participates in fine fragmentation, i.e., about one-third of the melt mass for the KROTOS tests using UO2-ZrO2 mixture.