ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Acacia Brunett, Richard Denning, Tunc Aldemir
Nuclear Technology | Volume 186 | Number 2 | May 2014 | Pages 198-215
Technical Paper | Reactor Safety | doi.org/10.13182/NT13-40
Articles are hosted by Taylor and Francis Online.
The risk-dominant containment failure modes of a pressurized water reactor are reassessed using the current state of knowledge for the phenomena that contribute to these failure modes. Our review concludes that some mechanisms that were considered as having the potential to result in containment failure at the time of NUREG-1150, such as in-vessel steam explosions and vessel launch (i.e., the alpha-mode containment failure), have subsequently undergone sufficient review and can be excluded from further consideration. For other phenomena, such as high-pressure melt ejection (HPME) and combustible gas explosions, our review concludes that substantial uncertainties still exist with regard to modeling in system level codes; for combustion events, careful consideration is still required when making severe accident management decisions. With regard to HPME, sensitivity studies have been performed with the MELCOR computer code to address the effects of modeling uncertainties on containment loading. Sensitivity studies using MELCOR have also been performed with regard to combustion events to examine gas generation, the effect of containment cooling on the potential for deflagrations, and the combustion load on containment. Combustion loads are compared to the NUREG-1150 containment fragility curve to assess the likelihood of containment failure. Our MELCOR analyses agree with the NUREG-1150 assumption that insufficient hydrogen is generated in-vessel to result in containment failure. Sensitivity studies regarding the rate and timing of reflooding a degraded core do not indicate a significant effect on hydrogen production in-vessel or a significant challenge to containment integrity regarding HPME. However, it is observed that recovery actions resulting in cooling of the containment atmosphere could result in deinerting the containment and lead to a sufficiently energetic combustion event that can fail the containment.