ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Acacia Brunett, Richard Denning, Tunc Aldemir
Nuclear Technology | Volume 186 | Number 2 | May 2014 | Pages 198-215
Technical Paper | Reactor Safety | doi.org/10.13182/NT13-40
Articles are hosted by Taylor and Francis Online.
The risk-dominant containment failure modes of a pressurized water reactor are reassessed using the current state of knowledge for the phenomena that contribute to these failure modes. Our review concludes that some mechanisms that were considered as having the potential to result in containment failure at the time of NUREG-1150, such as in-vessel steam explosions and vessel launch (i.e., the alpha-mode containment failure), have subsequently undergone sufficient review and can be excluded from further consideration. For other phenomena, such as high-pressure melt ejection (HPME) and combustible gas explosions, our review concludes that substantial uncertainties still exist with regard to modeling in system level codes; for combustion events, careful consideration is still required when making severe accident management decisions. With regard to HPME, sensitivity studies have been performed with the MELCOR computer code to address the effects of modeling uncertainties on containment loading. Sensitivity studies using MELCOR have also been performed with regard to combustion events to examine gas generation, the effect of containment cooling on the potential for deflagrations, and the combustion load on containment. Combustion loads are compared to the NUREG-1150 containment fragility curve to assess the likelihood of containment failure. Our MELCOR analyses agree with the NUREG-1150 assumption that insufficient hydrogen is generated in-vessel to result in containment failure. Sensitivity studies regarding the rate and timing of reflooding a degraded core do not indicate a significant effect on hydrogen production in-vessel or a significant challenge to containment integrity regarding HPME. However, it is observed that recovery actions resulting in cooling of the containment atmosphere could result in deinerting the containment and lead to a sufficiently energetic combustion event that can fail the containment.