ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Jeffrey Cardoni, Randall Gauntt, Donald Kalinich, Jesse Phillips
Nuclear Technology | Volume 186 | Number 2 | May 2014 | Pages 179-197
Technical Paper | Reactor Safety | doi.org/10.13182/NT13-41
Articles are hosted by Taylor and Francis Online.
In response to the accident at the Fukushima Daiichi nuclear power station in Japan, the U.S. Nuclear Regulatory Commission and U.S. Department of Energy agreed to jointly sponsor an accident reconstruction study as a means of assessing the severe accident modeling capability of the MELCOR code. Objectives of the project included reconstruction of the accident progressions using computer models and accident data, and validation of the MELCOR code and the Fukushima models against plant data. A MELCOR 2.1 model of the Fukushima Daiichi Unit 3 reactor is developed using plant-specific information and accident-specific boundary conditions, which involve considerable uncertainty due to the inherent nature of severe accidents. Publicly available thermal-hydraulic data and radioactivity release estimates have evolved significantly since the accidents. Such data are expected to continually change as the reactors are decommissioned and more measurements are performed. The MELCOR simulations in this work primarily use boundary conditions that are based on available plant data as of May 2012.