ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Yasushi Nomura, Hiroshi Okuno, Yoshinori Miyoshi
Nuclear Technology | Volume 148 | Number 3 | December 2004 | Pages 235-243
Technical Paper | Reactor Safety | doi.org/10.13182/NT04-A3563
Articles are hosted by Taylor and Francis Online.
Simplified evaluation models are developed at the Japan Atomic Energy Research Institute (JAERI) to predict the first peak power, energy, and total fission numbers during a criticality accident for design and installation of a criticality alarm system and for quick response with measures to avoid excessive exposure of the general public. These models were first derived in previous papers only from theoretical considerations employing one-point reactor kinetic neutron behavior and thus are applicable to any geometrical shape of vessel containing fissile solution. Applicability concerning nuclide composition comes essentially from using empirical equations describing specific heat and density to give simplified forms of the models. The models developed originally for a stepwise reactivity insertion mode are shown in the current paper to approximately stand for the ramp reactivity insertion mode by giving their theoretical formation and are validated by applying experimental data from JAERI's Transient Experiment Critical Facility (TRACY) on a low-235U-enriched uranium nitrate solution as well as CRAC experiments on high-235U-enriched uranium nitrate solution together with past accident data, including the most recent JCO accident.