ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reviewers needed for NRC research proposals
The deadline is fast approaching for submitting an application to become a technical reviewer for the Nuclear Regulatory Commission’s fiscal year 2025 research grant proposals.
Yasushi Nomura, Hiroshi Okuno, Yoshinori Miyoshi
Nuclear Technology | Volume 148 | Number 3 | December 2004 | Pages 235-243
Technical Paper | Reactor Safety | doi.org/10.13182/NT04-A3563
Articles are hosted by Taylor and Francis Online.
Simplified evaluation models are developed at the Japan Atomic Energy Research Institute (JAERI) to predict the first peak power, energy, and total fission numbers during a criticality accident for design and installation of a criticality alarm system and for quick response with measures to avoid excessive exposure of the general public. These models were first derived in previous papers only from theoretical considerations employing one-point reactor kinetic neutron behavior and thus are applicable to any geometrical shape of vessel containing fissile solution. Applicability concerning nuclide composition comes essentially from using empirical equations describing specific heat and density to give simplified forms of the models. The models developed originally for a stepwise reactivity insertion mode are shown in the current paper to approximately stand for the ramp reactivity insertion mode by giving their theoretical formation and are validated by applying experimental data from JAERI's Transient Experiment Critical Facility (TRACY) on a low-235U-enriched uranium nitrate solution as well as CRAC experiments on high-235U-enriched uranium nitrate solution together with past accident data, including the most recent JCO accident.