ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Ross Hays, Paul Turinsky
Nuclear Technology | Volume 186 | Number 1 | April 2014 | Pages 76-89
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-68
Articles are hosted by Taylor and Francis Online.
The process of transitioning from the current once-through nuclear fuel cycle to a hypothetical closed fuel cycle necessarily introduces a much greater degree of supply feedback and complexity. When considering such advanced technologies, it is necessary to consider when and how fuel cycle facilities can be deployed in order to avoid resource conflicts while maximizing certain stakeholder values. A multiobjective optimization capability was developed around the VISION nuclear fuel cycle simulation code to allow for the automated determination of optimum deployment scenarios and objective trade-off surfaces for dynamic fuel cycle transition scenarios. A parallel simulated annealing optimization framework with modular objective function definitions is utilized to maximize computational power and flexibility. Three sample objective functions representing a range of economic and sustainability goals are presented, as well as representative optimization results demonstrating both robust convergence toward a set of optimum deployment configurations and a consistent set of trade-off surfaces.