ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Frank Wols, Jan Leen Kloosterman, Danny Lathouwers, Tim Van Der Hagen
Nuclear Technology | Volume 186 | Number 1 | April 2014 | Pages 1-16
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-14
Articles are hosted by Taylor and Francis Online.
An inherently safe thorium-breeder pebble bed reactor has great potential to improve the safety and sustainability of nuclear energy. The aim of this work is to determine the conditions under which breeding is possible in a thorium-breeder pebble bed reactor (PBR) and to present possible core designs for such a reactor. A method is developed to calculate the equilibrium core configuration of a thorium-breeder PBR, consisting of a driver channel and a breed channel. The SCALE system is used for cross-section generation and fuel depletion, and a two-dimensional (r,z)-flux profile is obtained using the DALTON neutron diffusion code. With the code scheme, the influence of several geometrical, operational, and fuel management parameters on breeding capability can be studied. Four fuel reprocessing schemes are investigated. The first scheme recycles breeder pebbles into the driver channel after some delay for additional 233Pa decay. The second scheme reprocesses the discharged breeder pebbles to make driver pebbles with higher 233U content. The third scheme also reprocesses the uranium isotopes from the discharged driver pebbles. Criticality, and thus breeding, can only be achieved in practice for this case. The fourth scheme, which adjusts the driver pebble residence time to find a critical core, is used to design a thorium-breeder PBR under practical operating conditions. A breeder reactor can even be achieved for a 150-cm core diameter, the same as for the uranium-fueled HTR-PM, but the design presented operates at a significantly lower reactor power, 71 MW(thermal) compared with 250 MW(thermal).