ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Frank Wols, Jan Leen Kloosterman, Danny Lathouwers, Tim Van Der Hagen
Nuclear Technology | Volume 186 | Number 1 | April 2014 | Pages 1-16
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-14
Articles are hosted by Taylor and Francis Online.
An inherently safe thorium-breeder pebble bed reactor has great potential to improve the safety and sustainability of nuclear energy. The aim of this work is to determine the conditions under which breeding is possible in a thorium-breeder pebble bed reactor (PBR) and to present possible core designs for such a reactor. A method is developed to calculate the equilibrium core configuration of a thorium-breeder PBR, consisting of a driver channel and a breed channel. The SCALE system is used for cross-section generation and fuel depletion, and a two-dimensional (r,z)-flux profile is obtained using the DALTON neutron diffusion code. With the code scheme, the influence of several geometrical, operational, and fuel management parameters on breeding capability can be studied. Four fuel reprocessing schemes are investigated. The first scheme recycles breeder pebbles into the driver channel after some delay for additional 233Pa decay. The second scheme reprocesses the discharged breeder pebbles to make driver pebbles with higher 233U content. The third scheme also reprocesses the uranium isotopes from the discharged driver pebbles. Criticality, and thus breeding, can only be achieved in practice for this case. The fourth scheme, which adjusts the driver pebble residence time to find a critical core, is used to design a thorium-breeder PBR under practical operating conditions. A breeder reactor can even be achieved for a 150-cm core diameter, the same as for the uranium-fueled HTR-PM, but the design presented operates at a significantly lower reactor power, 71 MW(thermal) compared with 250 MW(thermal).