ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Katsuyuki Kawashima, Kazuteru Sugino, Shigeo Ohki, Tsutomu Okubo
Nuclear Technology | Volume 185 | Number 3 | March 2014 | Pages 270-280
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-38
Articles are hosted by Taylor and Francis Online.
As part of the Fast Reactor Cycle Technology Development (FaCT) Project, JSFR (Japan Sodium-Cooled Fast Reactor) core design efforts have been made to cope with the transuranic (TRU) fuel compositions expected during the light water reactor (LWR)–to–fast breeder reactor transition period, during which various kinds of TRU fuel compositions are available depending on the characteristics of the LWR spent fuels and their recycling method. The sodium void reactivity, which is one of the major core safety parameters, is considerably influenced by TRU fuel compositions. The criteria assigned to the JSFR core include a void reactivity effect limited to ∼6 $; therefore, designing a core with reduced sodium void reactivity will offer a greater margin for the core to host TRU fuel. To this end, a new core concept called BUMPY is proposed. This homogeneous core exhibits a low sodium void reactivity, due to partial-length fuels with an upper sodium plenum interspersed within the core, among other standard fuel assemblies. This core configuration enhances the upward and lateral neutron leakage from the core fuel region toward the sodium plenum when voiding to reduce void reactivity. The BUMPY core is applied to the 750-MW(electric) JSFR core design. The core can meet the design target by adjusting the loading fraction of the partial-length fuels and the height of the step in fuel lengths. The calculated void reactivity of the selected BUMPY core is 2.5 $ (25% loading fraction, 30-cm step height), which is considerably reduced from the 5.3 $ value of the reference core. This allows the BUMPY core to accommodate 5% to 9% more minor actinides in the core compared to the reference core.