ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Zhijian Wang, Kyoung O. Lee, Robin P. Gardner
Nuclear Technology | Volume 185 | Number 3 | March 2014 | Pages 259-269
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-13
Articles are hosted by Taylor and Francis Online.
A dual measurement system for monitoring the simultaneous positions of multiple radioactive tracer pebbles in scaled pebble bed reactors (PBRs) has been developed and benchmarked to the prototype stage. The first system (the collimated system) is an updated version of a previously developed system that is now a completely automatic system that uses three collimated directionally variable NaI detectors that are programed to continuously search for a maximum counting rate from a single radioactive pebble. This system can be used by itself when a single radioactive tracer pebble is of interest and the pebble is relatively slow moving. In the present case, its primary use is to provide an independent measurement of the position of a stationary tracer pebble that is used to provide a point for calibration of the second system. The second system (the uncollimated system) is a modified version of a multiple uncollimated NaI detector system commonly called CARPT. The modified version involves those changes necessary to allow for use of the entire gamma-ray spectra for the inverse problem instead of only the gamma-ray full energy peaks. This allows one to use multiple radioisotopes each in a different tracer pebble so that up to ten individual tracer pebbles can be followed simultaneously with the best possible accuracy. The inverse problem is treated with the Monte Carlo library least-squares approach in which Monte Carlo–generated library spectra for each radioisotope are made available for a complete range of reference positions within the scaled PBR. Then, any unknown total gamma-ray spectra can be analyzed in an iterative fashion with the radioisotope library spectra to yield the position of all the radioisotope tracer pebbles. The scaled PBR used was a 30-cm-high and 30-cm-diam circular cylindrical section on the top and a cone with a 25-deg angle on the bottom. The pebbles are 1.2-cm glass marbles. Results have been obtained with both single tracer radioisotope marbles and multiple tracer radioisotope marbles, simultaneously.