ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
D. F. Da Cruz, D. Rochman, A. J. Koning
Nuclear Technology | Volume 185 | Number 2 | February 2014 | Pages 174-191
Technical Paper | Fuel Cycle And Management | doi.org/10.13182/NT12-154
Articles are hosted by Taylor and Francis Online.
Uncertainty analysis on reactivity and discharged inventory for a typical pressurized water reactor fuel element as a result of uncertainties in 235,238U, 239,240,241Pu, and fission products nuclear data was performed. A typical Westinghouse three-loop fuel assembly fueled with UO2 fuel with 4.8% enrichment was selected. The Total Monte Carlo method was applied using the deterministic transport code DRAGON. This code allows the generation of the few-groups nuclear data libraries by directly using data contained in the nuclear data evaluation files. The nuclear data used in this study are from the JEFF3.1 evaluation, with the exception of the nuclear data files for U, Pu, and fission products isotopes (randomized for the generation of the various DRAGON libraries). These are taken from the TALYS evaluated nuclear data library TENDL-2012. Results show that the calculated total uncertainty in keff (as a result of uncertainties in nuclear data of the considered isotopes) is virtually independent of fuel burnup, and amounts to 700 pcm. The uncertainties in the inventory of the discharged fuel are dependent on the element considered and lie in the range 1% to 15% for most fission products, and are <5% for the most important actinides. The total uncertainty on the reactor parameters was also split into different components (different nuclear reaction channels), and the main sources of uncertainties were identified.